Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors synthesis WP1 (D1.1)

LEDtech-GROW

LED TECHNOLOGY BASED ON BISMUTH-SENSITIZED Eu³⁺ LUMINESCENCE FOR COST-EFFECTIVE INDOOR PLANT GROWTH

> PROGRAM-PROMIS-2024-2025 Grant Agreement: 10412

> > **Deliverable 1.1**

Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors synthesis Contractual Date Delivery: 03/01/2025

Project Deliverable Information Sheet

	Project Ref. No. 10412
LEDtech-GROW Project	Project Title: <i>LED technology based on bismuth-sensitized Eu</i> ³⁺ luminescence for cost-effective indoor plant growth
110,000	Call: Program PROMIS 2023
	Starting Date: 03/01/2024
	Duration: 24 months
	Project Website: https://ledtechgrow-promis.org/
	Deliverable No.: D1.1
	Deliverable Type: Document
	Month of delivery: 12
	Contractual Delivery Date: 03/01/2025
	Actual Delivery Date: 26/12/2024
	Principal investigator: Dr. BOJANA MILIĆEVIĆ
	Abstract: The report includes a description of the synthesis route and a list of prepared traditional Eu ³⁺ and Bi ³⁺ /Eu ³⁺ -activated
	fluoride phosphors, as well as a novel generation of Eu ³⁺ and Bi ³⁺ /Eu ³⁺ -activated fluoride phosphors. This report is a result of a
	joint effort between subactivities 1.1 and 1.2. All synthesized
	phosphors were prepared using green synthesis (HF-free synthesis) via "soft" chemistry routes (coprecipitation, conventional and microwave-assisted hydrothermal techniques).

Document Control Sheet

Document	Title: Report on Eu ³⁺ and Bi ³⁺ /Eu ³⁺ -activated phosphors synthesis.docx
	Distributed to LEDtech-GROW Participants
Authorship	Written by Sanja Kuzman
nuchorship	Contributed by Jovana Periša
	Approved by Bojana Milićević

Executive Summary

The presented document constitutes deliverable D1.1 – Report on Eu^{3+} and Bi^{3+}/Eu^{3+} -activated phosphors synthesis of the LEDtech-GROW project. It is a public document, delivered in the context of **WP1** - Design, synthesis, and characterization of plant-grow-targeted phosphors, **Subactivity 1.1** - Synthesis and design of traditional Eu^{3+} and Bi^{3+}/Eu^{3+} -activated inorganic fluoride phosphors [month: 1-12] and **Subactivity 1.2** - Synthesis and design of a novel generation of Eu^{3+} and Bi^{3+}/Eu^{3+} -activated inorganic fluoride phosphors [month: 1-12].

This document outlines the detailed synthesis procedure of prepared Eu^{3+} and Bi^{3+}/Eu^{3+} activated phosphors for sharing and disseminating information related to the LEDtech-GROW project. It details the activities, and tools for the synthesis procedure of targeted phosphors, ensuring alignment with both the project objectives and the specific activities of **WP1**.

Table of Contents

1. Synthesis of $Sr_2GdF_7:Eu^{3+}$ and $Sr_2GdF_7:Bi^{3+},Eu^{3+}$	Error! Bookmark not defined.
2. Synthesis of Sr_2LaF_7 : Bi^{3+} , Eu^{3+}	
3.Synthesis of SrF_2 : Eu^{3+} and synthesis of SrF_2 : Bi^{3+} , Eu^{3+}	9
4. Synthesis of BaF_2 : Eu ³⁺	
5.Synthesis of BaYF5:Eu3+ and BaYF5:Bi3+,Eu3+	
6.Synthesis of BaGdF ₅ :Eu ³⁺	
7.Synthesis of RbY_3F_{10} :Eu ³⁺	
8.Synthesis of GdF_3 :Eu ³⁺	14
9. Scientific Publications and Peer-Reviewed Journals	

Copyright Notice

Copyright © 2024 LEDtech-GROW project team. All rights reserved. LEDtech-GROW is a project funded by the Science Fund of the Republic of Serbia under grant agreement no. 10412. For more information on the project and contributors please see <u>https://ledtechgrow-promis.org/.</u> It is allowed to copy and distribute verbatim copies of this document containing this copyright notice; however, the modification of this document is forbidden.

Disclaimer

Vinča Institute is solely responsible for the content of this publication, and this content does not express the views of the Science Fund of the Republic of Serbia.

age4

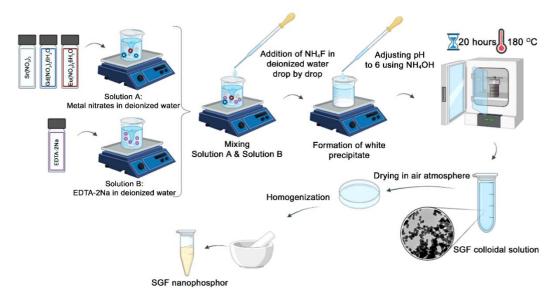
Abbreviations and Acronyms

Explanation

[BYF]	BaYF ₅
[BGF]	BaGdF5
[DEC]	Dissemination, Communication, and Exploitation
[EDTA-2Na]	Disodium ethylenediaminetetraacetate dihydrate
[LEDtech-GROW]	Acronym of the Project Titled "LED technology based on bismuth-sensitized Eu ³⁺ luminescence for cost-effective indoor plant growth"
[Open Access]	Open access publishing (gold or green open access) means that an article is immediately provided in open-access mode on the publisher or journal's website. Some publishers charge Article Processing Chargers (APCs) to make articles open.
[RYF]	RbY ₃ F ₁₀
[SEF]	Sr ₂ EuF ₇
[SGF]	Sr ₂ GdF ₇
[SGEF]	$Sr_2Gd_{0.2-x}Eu_{0.8}F_7$
[VinaR]	VinaR, i.e. Vinca Repository is a joint digital repository of all laboratories and departments in Vinča Institute of Nuclear Sciences, University of Belgrade. VinaR provides open access to the publications, as well as other outputs of the research projects implemented in these institutions.
[VINS]	"Vinča" Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
[WP]	Work package

1. Synthesis of Sr₂GdF₇:Eu³⁺ and Sr₂GdF₇:Bi³⁺, Eu³⁺

1.1 Synthesis of colloidal and powder Eu³⁺-doped Sr₂GdF₇ nanoparticles – WP1, sub-activity 1.2


Strontium nitrate (Sr(NO₃)₂, Alfa Aesar Karlsruhe, Germany, 99%), gadolinium (III) nitrate hexahydrate (Gd(NO₃)₃·6H₂O, Alfa Aesar, Karlsruhe, Germany, 99.9%), europium (III) nitrate hexahydrate, (Eu(NO₃)₃·6H₂O, Alfa Aesar, Karlsruhe, Germany, 99.9%), disodium ethylenediaminetetraacetate dihydrate (EDTA-2Na, C₁₀H₁₄N₂O₈Na₂·2H₂O, Kemika, Zagreb, Croatia, 99%),), ammonium fluoride (NH₄F, Alfa Aesar, Karlsruhe, Germany, 98%), 25% ammonium solution (NH₄OH, Fisher, Loughborough, Leicestershire, United Kingdom) and deionized water were used as starting materials without further purification.

The hydrothermal method was used to prepare a set of seven $Sr_2Gd_{1-x}Eu_xF_7$ (x = 0, 0.05, 0.10, 0.40, 0.60. 0.80, and 1.00, where mol.% of Eu³⁺ dopant ions were added with respect to Gd^{3+} colloids, as illustrated in Figure 1. A typical synthesis procedure includes metal nitrates and NH₄F as precursors and EDTA-2Na as a stabilizing agent. Due to the ability to improve crystalline seed dispersibility by forming [Sr-EDTA]²⁺ and [Gd-EDTA]⁺ complexes after mixing all the chemicals, EDTA-2Na prevented SGF particle aggregation during the subsequent hydrothermal treatment. At the same time, [Gd-EDTA]⁺ cations are adsorbed on the surfaces of SGF particles, additionally improving their stability. Typically, for the synthesis, all nitrates were weighed according to the stoichiometric ratio and dissolved in 12.5 ml of deionized water while stirring at room temperature. The solutions were mixed for 30 minutes with a transparent solution of EDTA-2Na in 12.5 ml of water (molar ratio EDTA-2Na:Ln = 1:1). Following that, 10 ml of NH₄F aqueous solution (molar ratio NH₄F:Ln = 12:1) was added and vigorously stirred for 1 hour, yielding a white suspension. The pH value of the mixture was adjusted to around 6 using NH₄OH. Hydrothermal treatment was carried out in a 100-mL Teflon-lined autoclave in the oven at 180 °C for 20 h followed by natural cooling. Obtained colloidal suspensions were acidic with pH = 6. The described method produced undoped SGF and SGF phosphors with varying concentrations of Eu³⁺ ions. The colloidal suspensions were dried in the air, and obtained powders used for XRD analysis, diffuse reflectance, and temperature-dependent photoluminescent measurements. The amounts of precursors used for synthesizing ~ 0.0025 mol (~ 1.2 g) of samples are given in Table 1.

Samples	Sr(NO ₃) ₂ (g)	Gd(NO ₃) ₃ ·6H ₂ O (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F (g)	EDTA (g)
SGF (x=0.00)	1.0582	1.1284	-		
SGF_5Eu (x=0.05)	1.0582	1.0720	0.0557	-	
SGF_10Eu (x=0.10)	1.0582	1.0156	0.1115	_	
SGF_40Eu (x=0.40)	1.0582	0.6770	0.4460	1.1111	0.9306
SGF_60Eu (x=0.60)	1.0582	0.4514	0.6690	_	
SGF_80Eu (x=0.80)	1.0582	0.2257	0.8919	_	
SEF (x=1.00)	1.0582	-	0.9306	_	

Table 1 The amounts of precursors needed for synthesizing Sr₂Gd_{1-x}F₇:xmolEu³⁺ samples.

Figure 1. Schematic illustration of the colloidal and powder SGF:Eu nanophosphors preparation.

1.2 Synthesis of powder Bi³⁺-doped Sr₂EuF₇ nanoparticles – WP1, sub-activity 1.2

Synthesis method: The hydrothermal method was used to prepare a set of four Sr₂Eu_{1-x}Bi_xF₇ nanoparticles (x = 0.01, 0,02, 0.05, and 0.10, where mol.% of Bi³⁺ dopant ions were added with respect to Eu³⁺). A typical synthesis procedure includes metal nitrates and NH₄F as precursors and EDTA as a stabilizing agent. The exact amounts of precursors used for synthesizing ~0.0025 mol of samples are given in Table 2. Hydrothermal treatment was carried out in a 100-mL Teflon-lined autoclave in the oven at 180 °C for 20 h followed by natural cooling.

Samples	Sr(NO ₃) ₂ (g)	Bi(NO ₃) ₃ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F (g)	EDTA (g)
SEF_1Bi (x=0.01)		0.0099	1.1041		
SEF_2Bi (x=0.02)	- 1.0582	0.0197	1.0929	- 1.1111	0.0206
SEF_5Bi (x=0.05)	- 1.0582	0.0494	1.0595	- 1.1111	0.9306
SEF_10Bi (x=0.10)	_	0.0988	1.0037	_	

Table 2 The amounts of precursors needed for synthesizing $Sr_2Eu_{1-x}F_7$:xmol% Bi^{3+} .

The synthesis proceeded in several steps:

- Dissolution of $Sr(NO_3)_2$, $Eu(NO_3)_3 \cdot 6H_2O$, and $Bi(NO_3)_3$ in 12.5 ml of water with the addition of a small amount of concentrated nitric acid until the solution became completely clear (solution 1), with heating at 60°C.
- Dissolution of EDTA in 12.5 ml of water (solution 2).
- Mixing solution 1 and solution 2, stirring for 30 minutes.
- Dissolution of NH₄F in 10 ml of water (solution 3), dropwise addition of solution 3 to the mixture of solution 1 and 2. After stirring for 15 minutes, the pH is adjusted to 5 with the addition of NH₄OH and stirring for about 1 hour.
- The mixture in the Teflon autoclave is hydrothermally treated in an oven at 180°C for 20 hours.
- After cooling to room temperature, the precipitate is collected by centrifuging at 4000 rpm for 10 minutes, then washed twice with water and water-ethanol mixture (1:1).
- The precipitate is dried at 70°C for several hours.

1.3 Synthesis of powder Bi³⁺-doped Sr₂Gd_{0.2}Eu_{0.8}F₇ nanoparticles – WP1, sub-activity 1.2

Synthesis method: The hydrothermal method was used to prepare a set of five Bi^{3+} -doped $Sr_2Gd_{0.2-x}Eu_{0.8}Bi_xF_7$ nanoparticles (x=0.00, 0.002, 0.01, 0.05, and 0.10 where mol.% of Bi^{3+} dopant ions were added with respect to Gd^{3+}). A typical synthesis procedure includes metal nitrates and NH₄F as precursors and EDTA as a stabilizing agent. The exact amounts of precursors used for synthesizing ~0.0025 mol of samples are given in Table 3. Hydrothermal treatment was carried out in a 100-mL Teflon-lined autoclave in the oven at 180 °C for 20 h followed by natural cooling.

Table 3 The amounts of precursors needed for synthesizing Bi³⁺-doped Sr₂Gd_{0.2-x}Eu_{0.8}F₇:xmol% Bi³⁺.

Samples	Sr(NO ₃) ₂ (g)	Gd(NO ₃) ₃ ·6H ₂ O (g)	Bi(NO ₃) ₃ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH4F (g)	EDTA (g)
SGEF_0Bi (x=0.00)		0.1947	-			
SGEF_0.2Bi (x=0.002)	-	0.1922	0.0025			
SGEF_1Bi (x=0.01)	1.0582	0.1849	0.0099	0.8922	1.1111	0.9306
SGEF_5Bi (x=0.05)	-	0.1460	0.0494			
SGEF_10Bi (x=0.10)	-	0.0973	0.0988			

2. Synthesis of Sr₂LaF₇:Bi³⁺,Eu³⁺

2.1 Bi³⁺-doped Sr₂LaF₇ – WP1, sub-activity 1.2

Synthesis method: The hydrothermal method was used to prepare Bi^{3+} -doped Sr_2LaF_7 nanoparticles (5 mol.% of Bi^{3+} dopant ions were added with respect to La^{3+}). A typical synthesis procedure includes metal nitrates and NH₄F as precursors and EDTA as a stabilizing agent. The exact amounts of precursors used for synthesizing ~0.0025 mol of samples are given in Table 4. Hydrothermal treatment was carried out in a 100-mL Teflon-lined autoclave in the oven at 180 °C for 20 h followed by natural cooling.

Precursors	n [mol]	m [g]
$Sr(NO_3)_2$	0.005	1.05815
$La(NO_3)_3 \cdot 6H_2O$	0.002375	1.0284
Bi(NO ₃) ₃	0.000125	0.0494
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

Table 4 The amounts of precursors needed for synthesizing Sr_2LaF_7 : 5mol%Bi³⁺.

2.2 Bi³⁺-codoped Sr₂La_{0.9}Eu_{0.1}F₇ – WP1, sub-activity 1.2

Synthesis method: The hydrothermal method was used to prepare $Sr_2La_{0.9}Eu_{0.1}F_7$ and Bi^{3+} -codoped $Sr_2La_{0.9}Eu_{0.1}F_7$ nanoparticles (10 mol% of Bi^{3+} dopant ions were added with respect to La^{3+}). A typical synthesis procedure includes metal nitrates and NH_4F as precursors and EDTA as a stabilizing agent. The exact amounts of precursors used for synthesizing ~0.0025 mol of samples are in Tables 5 and 6. Hydrothermal treatment was carried out in a 100-mL Teflon-lined autoclave in the oven at 180 °C for 20 h followed by natural cooling.

Page 8

Table 5 The	e amounts of precursors	needed for synthes	<i>izing Sr</i> ₂ <i>La</i> _{0.9} <i>Eu</i> _{0.1} <i>F</i> ₇ .
-------------	-------------------------	--------------------	--

Precursors	n [mol]	m [g]
$Sr(NO_3)_2$	0.005	1.05815
$La(NO_3)_3 \cdot 6H_2O$	0.00225	0.9743
$Eu(NO_3)_3 \cdot 6H_2O$	0.00025	0.1115
Bi(NO ₃) ₃	-	-
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

Table 6 The amounts of precursors needed for synthesizing Sr₂La_{0.8}Eu_{0.1}Bi_{0.1}F₇.

Precursors	n [mol]	m [g]
$Sr(NO_3)_2$	0.005	1.05815
$La(NO_3)_3 \cdot 6H_2O$	0.002	0.8660
$Eu(NO_3)_3 \cdot 6H_2O$	0.00025	0.1115
Bi(NO ₃) ₃	0.00025	0.0988
NH ₄ F	0.03	1.1111
EDTA	0.0025	0.9306

3. Synthesis of SrF₂:Eu³⁺ and synthesis of SrF₂:Bi³⁺,Eu³⁺

Synthesis of Eu³⁺-doped SrF₂ and Bi³⁺, Eu³⁺-doped SrF₂ nanoparticles – WP1, sub-activity 1.1

Two sets of samples were synthesized: 1.) SrF_2 doped with different europium ions concentrations: 1, 5, 10, 15, and 20 mol% ($Sr_{1-x}Eu_xF_2$ (x=0.01, 0.05, 0.1, 0.15, 0.2), Table 7) and 2.) SrF_2 doped with 10 mol% of europium ions and 5, 10, 15, 20, 30, 40 and 50 mol% of bismuth ions ($Sr_{0.9-y}Eu_{0.1}Bi_yF_2$ (y=0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5), Table 8). Additionally, one more sample, SrF_2 doped with 20 mol% of bismuth ions has been synthesized (SrF_2 : 20Bi, exact amounts are given in Table 9).

The chemicals for the synthesis of the desired samples were acquired and used as received: strontium (II) nitrate ($Sr(NO_3)_2$, Alfa Aesar, 99%), europium (III) nitrate hexahydrate ($Eu(NO_3)_3 \times 6H_2O$, Alfa Aesar, 99.9%), bismuth (III) nitrate pentahydrate ($Bi(NO_3)_3 \times 5H_2O$, Sigma Aldrich, 98+%) sodium fluoride (NaF, Alfa Aesar, 99.9%), ethylene glycol (EG) and absolute ethanol (abs. EtOH).

In essence, strontium and europium nitrate in corresponding ratios (for the samples co-doped with bismuth ions, bismuth nitrate was added) were dissolved in ethylene glycol and stirred for 30 minutes. The next step is the addition of an EG solution of sodium fluoride, followed by another 30 minutes of stirring. The precursor mixture was then placed in the microwave reaction vessel and the reaction conditions were a) heating at 150°C for 10 minutes, and b) subsequently cooling to room temperature. The microwave experiments were carried out in an Anton-Paar microwave reactor (Monowave 400) in temperature control mode, utilizing a 30 mL Pyrex jar tightly sealed with a Teflon lid and stirred magnetically at 600 rpm. Each sample obtained through microwave synthesis was transferred into a centrifuge tube, centrifuged, and rinsed several times with abs. EtOH.

Sample	Abbreviated name	Sr(NO ₃)2 (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NaF (g)	EG (ml)
Sr _{0.99} Eu _{0.01} F ₂	SrF ₂ :1Eu	0.2095	0.00446		
Sr _{0.95} Eu _{0.05} F ₂	SrF ₂ :5Eu	0.2010	0.0223		
$Sr_{0.9}Eu_{0.1}F_2$	SrF ₂ :10Eu	0.1905	0.0446	0.0840	15
Sr _{0.85} Eu _{0.15} F ₂	SrF ₂ :15Eu	0.1799	0.0669		
$Sr_{0.8}Eu_{0.2}F_2$	SrF ₂ :20Eu	0.1693	0.0892		

Table 7. Precursors for synthesis of 1 mmol of SrF_2 : x mol% Eu^{3+} (x= 1, 5, 10, 15, 20) samples.

This project is supported by the Science Fund of the Republic of Serbia, Grant No. 10412,

 $\label{eq:left} \ensuremath{\textit{LED}}\xspace technology\ based\ on\ bismuth-sensitized\ Eu^{3+}\ luminescence\ for\ cost-effective\ indoor\ plant\ growth\ -\ LeDtech-GROW$

Table 8. Precursors for synthesis of 1 mmol of SrF ₂ : 10mol% Eu ³	³⁺ , y mol% Bi ³⁺ (y= 5, 10, 15, 20, 30, 40, 50) samples.
--	---

Sample	Abbreviated Name	Sr(NO ₃) ₂ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	Bi(NO ₃) ₃ x5H ₂ O (g)	NaF (g)	EG (ml)
$Sr_{0.4}Eu_{0.1}Bi_{0.5}F_2$	SrF ₂ :10Eu5Bi	0.1799		0.0243		
Sr _{0.8} Eu _{0.1} Bi _{0.1} F ₂	SrF ₂ :10Eu10Bi	0.1693	-	0.0485		
Sr _{0.75} Eu _{0.1} Bi _{0.15} F ₂	SrF ₂ :10Eu15Bi	0.1587		0.0725		
$Sr_{0.7}Eu_{0.1}Bi_{0.2}F_2$	SrF ₂ :10Eu20Bi	0.1481	0.0446	0.0970	0.0840	15
$Sr_{0.6}Eu_{0.1}Bi_{0.3}F_2$	SrF ₂ :10Eu30Bi	0.1269	_	0.1455		
$Sr_{0.5}Eu_{0.1}Bi_{0.4}F_2$	SrF ₂ :10Eu40Bi	0.1058	_	0.1940		
$Sr_{0.4}Eu_{0.1}Bi_{0.5}F_2$	SrF ₂ :10Eu50Bi	0.0846	-	0.2425		

Table 9. Exact amounts of precursors used for the synthesis of 1mmol of SrF₂:20Bi sample

Sample	Abbreviated name	Sr(NO ₃) ₂ (g)	Bi(NO ₃) ₃ ·5H ₂ O(g)	NaF (g)	EG (ml)
Sr _{0.8} Bi _{0.2} F ₂	SrF ₂ :20Bi	0.1693	0.0970	0.0840	15

Figure 2. Schematic illustration of the precipitation synthesis of SrF₂:Eu,Bi nanoparticles.

4. Synthesis of BaF₂:Eu³⁺

Synthesis of Eu³⁺-doped BaF₂ nanoparticles – WP1, sub-activity 1.1

The chemicals for the synthesis of the desired samples were acquired and used as received: barium (II) nitrate $(Ba(NO_3)_2, Alfa Aesar, 99\%)$, europium (III) nitrate hexahydrate $(Eu(NO_3)_3 \times 6H_2O, Alfa Aesar, 99.9\%)$, bismuth (III) nitrate pentahydrate $(Bi(NO_3)_3 \times 5H_2O, Sigma Aldrich, 98+\%)$ sodium fluoride (NaF, Alfa Aesar, 99.9%), ethylene glycol (EG) and absolute ethanol (abs. EtOH).

In essence, barium and europium nitrate in corresponding ratios (for the samples co-doped with bismuth ions, bismuth nitrate was added) were dissolved in ethylene glycol and stirred for 30 minutes. The next step is the addition of an EG solution of sodium fluoride, followed by another 30 minutes of stirring. The precursor mixture was then placed in the microwave reaction vessel and the reaction conditions were a) heating at 150°C for 10 minutes, and b) subsequently cooling to room temperature. The microwave experiments were carried out in an Anton-Paar microwave reactor (Monowave 400) in temperature control

$$_{\rm Page}10$$

mode, utilizing a 30 mL Pyrex jar tightly sealed with a Teflon lid and stirred magnetically at 600 rpm. Each sample obtained through microwave synthesis was transferred into a centrifuge tube, centrifuged, and rinsed several times with abs. EtOH.). The exact amounts of precursors used for synthesizing are given in Table 10.

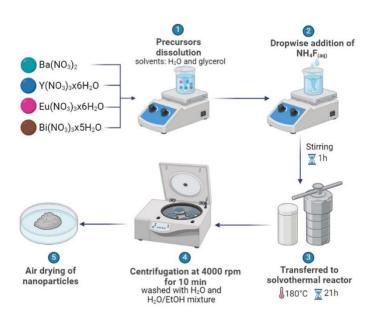
Table 10. Precursors for synthesis of 1 mmol of BaF_2 : x mol% Eu^{3+} (x= 1, 5, 10, 15, 20) sample	s.

Sample	Abbreviated name	Ba(NO ₃) ₂ (g)	Eu(NO3)3·6H2O (g)	NaF (g)	EG (ml)
$Ba_{0.99}Eu_{0.01}F_2$	BaF ₂ :1Eu	0.2587	0.0045		
$Ba_{0.95}Eu_{0.05}F_2$	BaF ₂ :5Eu	0.2483	0.0223		
$Ba_{0.9}Eu_{0.1}F_2$	BaF ₂ :10Eu	0.2352	0.0446	0.0840	15
$Ba_{0.85}Eu_{0.15}F_2$	BaF ₂ :15Eu	0.2221	0.0669		
$Ba_{0.8}Eu_{0.2}F_2$	BaF ₂ :20Eu	0.2091	0.0892		

5. Synthesis of BaYF₅:Eu³⁺ and BaYF₅:Bi³⁺,Eu³⁺

Synthesis of Eu³⁺-doped BaYF₅ and Bi³⁺, Eu³⁺-doped BaYF₅ nanoparticles – WP1, sub-activity 1.2

Yttrium(III) nitrate hexahydrate (Y(NO₃)₃·6H₂O, 99.8%) was purchased from Aldrich, while bismuth(III) nitrate pentahydrate (Bi(NO₃)₃·5H₂O, 98.0%) was from Reanal. Europium(III) nitrate hexahydrate (Eu(NO₃)₃·6H₂O, 99.9%), barium nitrate (Ba(NO₃)₂, 99.95%) and ammonium fluoride (NH₄F, 98%) were obtained from Alfa Aesar. Glycerol (\geq 99%) was purchased from Acros Organics. All the materials were used without further purification.


Three sets of nanophosphors were synthesized using the solvothermal method: 1. BaYF₅: *x*Eu, where x = 1, 10, 20 mol%; 2. BaYF₅: 10Eu, *y*Bi, where y = 0, 5, 10, 20, 30, 50 mol%; and 3. BaYF₅: *x*Eu, 20Bi where x = 1, 5, 10, 20 mol%. Each synthesis was conducted through the steps presented in Figure 3. Initially, Ba(NO₃)₂, Ln-nitrates, and Bi(NO₃)₃ were weighted according to the stoichiometric ratio (nominal amounts in precursor mixture are presented in Table 11) and dissolved in 7.0 ml water and 7.5 ml glycerol. After that, an excess amount of NH₄F was dissolved in 1.0 ml water and added dropwise to the initial solution. The resulting solution was maintained with a strong stirring for 1 h at room temperature. This mixture was then transferred into a 50-mL Teflon-lined autoclave and heated in the oven at 180°C for 21 h. The obtained nanoparticles were centrifuged at 4000 rpm for 10 minutes, washed in water and ethanol:water = 1:1 mixture, and air dried before further characterization.

30, 50 mol%) sample set.					
Bi ³⁺ (mol%)	Ba(NO ₃) ₂ (mmol)	Y(NO ₃) ₃ ·6H ₂ O (mmol)	Eu(NO3)3·6H2O (mmol)	Bi(NO ₃) ₃ (mmol)	NH4F (mmol)
0		0.90		/	
5		0.85		0.05	
10	1.00	0.80	0.10	0.10	7.00
20	1.00	0.70	0.10	0.20	7.00
30		0.60		0.30	
50		0.40		0.50	

Table 11. The final precursor quantities for the synthesis of the representative BYF:10Eu, yBi (y = 0, 5, 10, 20,30, 50 mol%) sample set.

1.1. Report on Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors synthesis

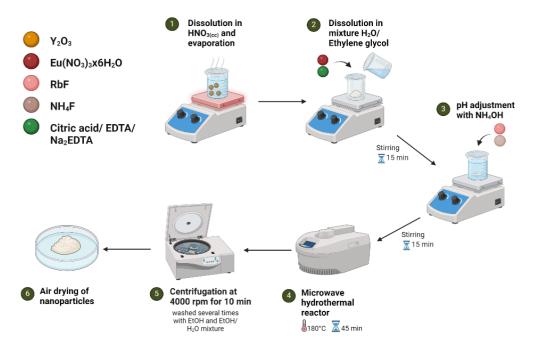
Figure 3. Schematic illustration of the solvothermal synthesis of BYF: Eu, Bi nanoparticles. The precursors were initially dissolved in a water-glycerol mixture and fluoride ions were added dropwise (steps 1, 2). After vigorous stirring, the resulting mixture was transferred to a Teflon-lined autoclave and heated to 180°C for 21 h (step 3). The resulting nanoparticles were subsequently washed, centrifuged, and left to dry in air (steps 4, 5).

6. Synthesis of BaGdF₅:Eu³⁺, BaGdF₅:Bi³⁺,Eu³⁺

Synthesis of Eu³⁺-doped BaGdF₅ and Bi³⁺, Eu³⁺-doped BaGdF₅ nanoparticles – WP1, sub-activity 1.2

The synthesis was conducted through the steps presented in Figure 3. Initially, $Ba(NO_3)_2$, Ln-nitrates, and $Bi(NO_3)_3$ were weighted according to the stoichiometric ratio (nominal amounts in precursor mixture are presented in Table 12) and dissolved in 7.0 ml water and 7.5 ml glycerol. After that, an excess amount of NH₄F was dissolved in 1.0 ml water and added dropwise to the initial solution. The resulting solution was maintained with a strong stirring for 1 h at room temperature. This mixture was then transferred into a 50-mL Teflon-lined autoclave and heated in the oven at 180°C for 21 h. The obtained nanoparticles were centrifuged at 4000 rpm for 10 minutes, washed in water and ethanol:water = 1:1 mixture, and air dried before further characterization. Future work will focus on the optimization of Eu content in BGF, and Bi³⁺-co-doping the representative BGF:Eu nanophosphor.

Table 12. Precursors for synthesis of BaGdF ₅ : 10 mol% Eu ³⁺ sample.					
BaGdF ₅	Ba(NO ₃) ₂ (g)	Gd(NO ₃) ₃ .6H ₂ O (g)	Eu(NO ₃) ₂ ·H ₂ O (g)	NH ₄ F (g)	
BGF:10Eu	0.2570	0.4059	0.0447	0.2590	


7. Synthesis of RbY_3F_{10} : Eu^{3+}

Synthesis of Eu^{3+} -doped $RbY_{3}F_{10}$ nanoparticles – WP1, sub-activity 1.2

Using the microwave-assisted solvothermal method, we synthesized the fluoride host material RbY_3F_{10} doped with Eu^{3+} . By varying the chelating agents (EDTA, Na₂EDTA, citric acid) and pH we controlled the coordination environment around the metal ions, resulting in different products. The exact amounts of precursors used for synthesizing are given in Table 13.

RbY ₃ F ₁₀	RbF (g)	Y ₂ O ₃ (g)	Eu(NO ₃) ₃ ·6H ₂ O (g)	NH ₄ F(g)	EDTA(g)	Citric acid(g)
RYF:10Eu_1					/	0.2880
RYF:10Eu_2		0 1 5 2 5	0.0670		/	
RYF:10Eu_3		0.1525	0.0670		0.4384	
RYF:10Eu_4				_		
RYF:1Eu	0.0522	0.1678	0.0067	0.1850		
RYF:5Eu		0.1610	0.0335	-	0.0730	/
RYF:15Eu		0.1441	0.1006	_	0.0730	
RYF:30Eu		0.1186	0.2010	_		
RYF:50Eu		0.0847	0.3350			

Table 13. Precursors for the synthesis of RbY₃F₁₀: x mol% Eu³⁺ sample.

Figure 4. Schematic illustration of the solvothermal synthesis of RbY₃F₁₀: Eu nanoparticles.

8. Synthesis of GdF₃:Eu³⁺, GdF₃:Bi³⁺,Eu³⁺

Synthesis of Eu^{3+} -doped GdF₃ nanoparticles – WP1, sub-activity 1.1

Using the coprecipitation method, we synthesized the fluoride host material $GdF_3:Eu^{3+}$. By varying the annealing temperature (400°C (2h), 500°C (2h), 600°C (2h), and 500°C (5h)) we controlled the crystallinity of the products. The exact amounts of precursors used for the synthesis of GdF_3 : 10 mol% Eu^{3+} samples are given in Table 14. Future work will focus on optimization of Eu^{3+} content in GdF_3 , and Bi^{3+} -co-doping of representative $GdF_3:Eu$ nanophosphors.

Synthesis:

LEDtech

GROW

- Dissolving rare earth nitrates in 8 ml distilled water and 4 ml ethylene glycol (solution A).
- Dissolving NH₄F in 8 ml distilled water and 4 ml ethylene glycol (solution B).
- Stirring solutions A and B for 2 hours
- Washing the previously centrifugated precipitates several times with H₂O: EtOH = 1:1
- Drying overnight and then annealing at different temperatures.

Table 13. Precursors for the synthesis of GdF ₃ : 10 mol% Eu ³⁺ samples.						
GdF ₃	Gd(NO ₃) ₃ ·6H ₂ O (g)	Eu(NO ₃) ₂ ·5H ₂ O (g)	NH ₄ F (g)			
10 mol.% Eu	1.6248	0.1784	0.4444			

Figure 5. Schematic illustration of the precipitation synthesis of GdF₃:Eu nanoparticles.

9. Scientific Publications and Peer-Reviewed Journals

During the first year of the project implementation, the LEDtech-GROW team achieved the following: three papers were published in peer-reviewed journals, all of which are Open Access as per the grant agreement; four poster presentations were delivered at international conferences; and one invited talk was given at a domestic conference.

- B. Milićević, A. Ćirić, Z. Ristić, M. Medić, A. N. Alodhayb, I. Radosavljević Evans, Ž. Antić, M. D. Dramićanin. "Eu3+- activated Sr2GdF7 colloid and nano-powder for horticulture LED applications". Journal of Alloys and Compounds 1010 (5) (2025) 177820. <u>https://doi.org/10.1016/j.jallcom.2024.177820</u>
- K. Milenković, Lj. Đačanin Far, S. Kuzman, Ž. Antić, A. Ćirić, M. D. Dramićanin, B. Milićević. "Red emission enhancement in BaYF₅:Eu³⁺ phosphor nanoparticles by Bi³⁺ co-doping". *Optics Express* 32 (23) (2024) 41632-41643 <u>https://doi.org/10.1364/OE.542685</u>
- J. Periša, S. Kuzman, A. Ćirić, Z. Ristić, Ž. Antić, M. D. Dramićanin, B. Milićević. "Tuneable Red and Blue Emission of Bi³⁺-Co-Doped SrF₂:Eu³⁺ Nanophosphors for LEDs in Agricultural Applications". Nanomaterials 14(20), 1617. <u>https://doi.org/10.3390/nano14201617</u>
- <u>K. Milenković</u>, V. Đorđević, I. Zeković, Z. Ristić, J. Periša, B. Milićević, M. D. Dramićanin: "Microwave-assisted solvothermal method for RbY₃F₁₀ doped with Eu³⁺"- The 7th International Conference on the Physics of Optical Materials and Devices & The 4th International Conference on Phosphor Thermometry (ICOM&ICPT 2024), August 26-30, 2024, Bečići, Budva Montenegro, P-50, (pp 165).
- 5. <u>S. Kuzman</u>, B. Milićević, J. Periša, A. Ćirić, Z. Ristić, Ž. Antić, M. D. Dramićanin: "Synthesis and photoluminescent properties of Bi³⁺-codoped SrF₂:Eu³⁺ phosphor nanoparticles"- The 7th International Conference on the Physics of Optical Materials and Devices & The 4th International Conference on Phosphor Thermometry (ICOM&ICPT 2024), August 26-30, 2024, Bečići, Budva Montenegro, P-51, (pp 166).
- <u>B. Milićević</u>, A. Ćirić, Z. Ristić, M. Medić, I. Radosavljevic Evans, Ž. Antić, M. D. Dramićanin: "Synthesis, luminescent properties, and thermal stability of Eu³⁺-doped Sr₂GdF₇ red-emitting nanophosphor for horticulture LEDs"- The 7th International Conference on the Physics of Optical Materials and Devices & The 4th International Conference on Phosphor Thermometry (ICOM&ICPT 2024), August 26-30, 2024, Bečići, Budva Montenegro, P-53, (pp 168).
- <u>K. Milenković</u>, V. Đorđević, S. Kuzman, J. Periša, B. Milićević, Miroslav D. Dramićanin: "Three-fold enhancement of Eu³⁺ emission intensity in BaYF₅ nanoparticles by Bi³⁺ co-doping", -12th International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR), June 16-21, 2024, Riga, Latvia, PA13, (pp 89).
- 8. <u>S. Kuzman</u>, B. Milićević, K. Milenković, J. Periša, M. D. Dramićanin: "Bizmuth-sensitized Eu³⁺ luminescent LED technology for effective indoor plant growth"- The 3rd Serbian Conference on Materials Application and Technology (SCOM2024), October 16-18, Belgrade, Serbia, I-1, (pp 8). *Invited talk*

LEDtech-GROW team members reached **Milestone M1.1 - A list of Eu³⁺ and Bi³⁺/Eu³⁺-activated phosphors defined** (verification: Single-phase crystal structure and appropriate phosphors' emission that matches the PAR spectrum). The list is as follows:

- 1. Eu³⁺-doped Sr₂GdF₇ colloidal and powder nanoparticles
- 2. Eu^{3+} -doped RbY_3F_{10} powder nanoparticles
- 3. Bi³⁺, Eu³⁺-doped SrF₂ nanopowders
- 4. Bi³⁺, Eu³⁺-doped BaYF₅ powder nanoparticles